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Abstract-This study analyses the transient conjugated heat transfer in laminar pipe flow, where the flow 
is both hydrodynamically and thermally fully developed. Two cases are considered : a prescribed constant 
wall temperature and a constant heat flux at the wall. A non-standard method of separation of variables 
is applied, which treats the fluid and the solid as one region with certain d&continuities. The resulting 
eigenfunctions, which are not orthogonal to each other with respect to the usual weight function according 
to the Sturm-Liouville theorem, are made orthogonal to each other with respect to a special weight 
function. It is concluded that the degree of conjugation and viscous dissipation may have a great impact 

on the temperature distribution in the fluid. 

INTRODUCTION 

WE CONSIDER the transient conjugated heat transfer 
in laminar pipe flow. The flow is hydrodynamically 
and thermally fully developed and either the wall tem- 
perature or the wall heat flux is prescribed. 

The need to solve the coupled temperature dis- 
tribution in the fluid and the solid arises in the design 
of energy-related systems during the period of startup, 
shutdown or any off-normal surge in normal oper- 
ating conditions. Examples are the design of compact 

heat exchangers, thick-walled pipes, change in power 
level transients in gas turbine engines and the design 
of cooling channels of nuclear reactors. In such cases, 

the boundary conditions imposed at the external sur- 
face, in general, are different from their counterparts 

at the internal surface. These deviations emerge 
because the wall plays a significant role in distributing 
the heat transferred from the external surface to the 
fluid or vice versa. 

Early attempts to solve unsteady heat transfer 
problems mainly employed approximate methods to 
deduce the gross features of the problems [l-3]. 
Recently, several numerical solutions have been 
obtained for unsteady thermal entrance heat transfer 
in laminar channel flows with various thermal bound- 
ary conditions [4-61. All the noted studies [l-6] 
focused on the transient heat transfer characteristics, 
neglecting the heat conduction in the solid and its heat 
capacity. The results of such investigations are valid 
for flows in thin-walled ducts, but not for thick-walled 
ones. Recently, Sucec and Sawant [7-lo] and Cotta 
et al. [l l] analysed the effect of wall heat capacity on 
unsteady heat transfer in laminar channel flows and 

showed that it is of great importance. Nevertheless, 
wall conduction still remained untreated. The latter 

effect was examined by Chung and Kassemi [12], 
Krishan [13], Lin and Kuo 1141 and Yan et al. [15]. 
The methods of solutions were either approximate 
[ 12, 131 or numerical [ 14, 151. We addiess the problem 

studied by Krishan [ 131 who employed the method of 
Laplace transforms, but the resulting solutions were 
valid for short-time periods only. In the following 
the problem is first formulated. An exact solution is 

derived by an extended method of separation of vari- 
ables developed by Yeh [16, 171, which is capable of 

treating discontinuous eigenfunctions. Methods for 
the solution of multispace domain diffusion problems 
can be found in an excellent study by Wirth and 
Rodin [18], who mentioned over 200 references. 

Detailed results are presented and compared to those 
of Krishan [ 131. 

ANALYSIS 

Consider a hydrodynamically and thermally fully- 
developed flow with mean velocity u, in an infinitely 
long pipe. The internal radius of the pipe is Ri and its 
external radius is R,. The solution is carried out for 
the first time domain t < t,,, = z/2u,, where z is an 
axial distance from the inlet cross-section. In this 
domain the downstream locations in the pipe have 
not yet been reached by any of the fluid that was at 
the pipe inlet at the beginning of the transient. For 
the boundary conditions considered, aT/az = 0, so 

that the energy equations for heat transfer in the fluid 
and solid, respectively, are given by 
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NOMENCLATURE 

4, constant, equation (30) 
A matrix, equation (28) 

B, constant, equation (34) 

B? constant, equation (35) 

BY constant, equation (34) 

B, constant, equation (35) 

& constant, equation (30) 
h ratio of external and internal radii of the 

pipe, RJR,, or variable, equation (35) 
C dimensionless magnitude of viscous 

dissipation 
C n constant, equation (50) or equation (61) 

specific heat at constant pressure 

2,) D, constants, equation (32) 
E,, E2 constants, equation (33) 

eI, e2 constants, equation (26) 
F constant, equation (41) 

.f’ function, see definition below equation 

(15) 
,f’, , ,f; constants, equation (26) 

G,, 
G,* 
.9 

constant, equation (45) 

constant, equation (60) 
function, see definition below equation 

(15) 

9* 
K 
K* 
k 

function, equation (58) 
ratio of conductivities, F,/F, 
conjugation parameter, Jk/K 

ratio of wall to fluid thermal diffusivities, 

PIcpl~?llWp?~l 
F thermal conductivity 

N number of terms in series expansion 

P function, equation (31) 

4 heat flux or function, equation (31) 

R space eigenfunction, equation (26) 

internal pipe radius 
external pipe radius 

dimensionless radial coordinate. r;‘R, 
radial coordinate 

dimensionless heat flux 
dimensionless wall temperature 
temperature 

initial system temperature 
wall temperature 
reference temperature 
time 
mean velocity of fluid 
velocity distribution 

weight function, equation (3 I ) 
independent variable 
vector, equation (37) 
dependent variable, equation (3 1). 

Greek symbols 
l- time function related to the separation of 

variables, equation (48) 
II dimensionless temperature distribution 
i separation constant 

/’ dynamic viscosity 

P density 
z dimensionless time, h, tij~, c,~, R,’ 

4 function, equation (56) 

i dimensionless temperature distribution, 

equation (51). 

Superscripts 
_ fluid region 

+ solid region. 

J 

where subscripts 1 and 2 refer to the fluid and the 
solid, respectively. All variables retain their usual 

0 < t < t,,,,, 0 < ? i R, 

0 < t < t,,,, R, < f < R, 

and the associated initial and boundary 

are 

t = 0,O < J < R, : T, = T, = T, 

t>O,f=O: T, =finite(orL1T,/%= 

t > 0, f = Ri : T, = T2 

t > 0, r = ~~ : E,ar,jar = k,aT,jar 

meaning and are given in the Nomenclature. 

(1) Define the following dimensionless variables : 

(2) where for an external wall heat flux boundary 

conditions condition 

(4) while for a wall temperature boundary condition 

t>O,r==R,: -,6,aT,jaf= q or T2 = T, with u = 2u,(l - r’/R,2) to obtain the following math- 

(7ab) ematical formulation of the problem : 
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80, ia ae, -=-- 
aT ( > r- +cr2, 

r ar ar 
t > 0,O < r < 1 (8) 

_&la ra82 ao2 
aT () r dr ar ' 

z > 0, 1 < r < b (9) 

z=O,O<r<b: 0, =f!J2=0 (10) 

t>O,r=O: 0, =finite(oraf3,/&=0) (11) 

r>O,r= 1: 8, =(I2 (12) 

r > 0, r = 1: ae,/ar = Kae,jar (13) 

z>O,r=b: aO,/ar=S, or &=SZ. 

(14a,b) 

Equations (8)-(14) can be put in the following unified 
form : 

+g(r), T > 0, 0 < r < b 

with 

z=O,O<rdb: t3=0 (16) 

z > 0,r = 0: Q=finite or ao/dr= 0 (17) 

z>O,r= 1: B- =8+ (18) 

z>O,r=l: Wpr=Ka0+/ar (19) 

z>O,r=b: iXlpr=S, or 9=S2 

(2Oa,b) 

where 8- and 6+ are the temperature distributions in 
the liquid and solid, respectively. 

Thus, the fluid and solid domains are converted 
into a single region with a discontinuous heat source 
and thermophysical properties. 

The eigenvalue problem associated with equation 
(15) can be put in the form 

f(r): E(rg) = -1’R (21) 

r = 0 : R = finite (or aR/& = 0) (22) 

r=l: R-=R+ (23) 

r= 1: aR-jar=KaR+/ar (24) 

r=b: aR/&=O or R=O (250) 

where R is an eigenfunction and --,I2 is a separa- 
tion constant. The solution of equation (21) can be 
expressed by 

RI = e,J,(ir)+e,Y&r) O<r<l 
R= 

R 2 = f, J, (WJk) +fi Y0 (WJk) 1 < r < b. 

(26) 

To satisfy condition (22), e, must be zero and the 
remaining three boundary conditions (23)-(25) yield 

Ax = 0 

where x = (e, , f, , f2)= and 

[ 

-J&,> Jo (A&‘4 
A = -K*J,(U J,@,/ Jk) 

0 J, (U/ Jk) 

for boundary condition (25a) or 

-J&n) Jo@n/& 
A = -K*J,@,) J,(UJk) 

0 JoWlJk) 

(27) 

y&l J4 
y&n/J4 
KWlJk) 1 (284 
Yo@n/ J4 
Wn/Jk) 
KdWJ4 I 

@b) 
for boundary condition (25b), where K* = Jk/K. 
Equations (27) are homogeneous simultaneous equa- 
tions for e,, f,, and f2. Non-trivial solutions exist if 
the determinant of the coefficients is zero, i.e. 

det A = 0. (29) 

Equation (29) can be solved for the eigenvalue 1. For 
each value of 1, A,,, which satisfies equation (29) only 
two of the three equations in (27) are linearly inde- 
pendent, and two of the unknowns, say f, and f2, can 
be solved from these two equations in terms of the 
other, say e,. Thus, the eigenfunction R,, aside from 
the constant multiplier e,, is 

RI, = J&r) 
R,(r) = 

R2, = AnJ&,r/ Jk) +R Y&r/ Jk) 

(30) 

with 

J&n) Y,&/ Jk) -K* YoRt/ Jk)J,(4t) 
An = J&n/& y, (Ai J4 - YcOnl JQJ, @,I Jk) 

B = K*J,(a~/Jk)J,(a,)-J,(a,)J,(a,lJk) 
" Jo&/& Yi @n/J4 - W,/Jk)J, Ai Jk) ' 

The functions {R,(r)} do not form an orthogonal set, 
because the first derivative of R*(r) is discontinuous 
at r = 1 as indicated by equation (19) and therefore 
the Sturn-Liouville theorem of orthogonality does 
not apply. The functions, however, can be made 
orthogonal to each other with respect to a proper 
choice of weight function which can be found by the 
theorem of Yeh [ 161. 

Theorem. Given the differential equation 

& PW~ +~k4+w4i~ = 0 
[ 1 

(31) 

where p(x), q(x) and W(X) may be discontinuous at 
x = x,, x2,. . , x,_ , in the closed interval x,, < x < xN. 



If L,. i,, /.l. arc the values oT 
satisfying the boundary conditions 

n ,Jj.X,,) - D2J~‘(.X,,) = 0 

and 

this equation be equal to K. The proportional constant is immateri;\l 
as it does not affect the orthogonal relation (3X). /. 

117) 
will be taken as the dimensionless quantit> 

F, = I. F, = ti. (-II) 

(33) 
C’mf 1. Wull tcmprruture houn~lur~~ c,onr/itiorl 

where a prime denotes the derivative and D, , &, E,. 
E2 are arbitrary constants, and these solutions possess 

the following discontinuities at x = .Y,. _Y,,. . I,, 
_Y, ,: 

i= I.2 .___., Y--l (34) 

[h(.x)$, = ,; = R,,[h(.X)Jj]: \; + B,,.l’(x,+ ). 

i= 1,2,....N~I (35) 

in which B,, and BZ, are the constants and h(x) and 
h’(x) may be discontinuous at .Y = _I-, , .x2,. j .sa. , . 
and if y,, J*, I’,, are the solutions corresponding 
to these values of i,, then the functions {,;I(~~)} form a 
system orthogonal with respect to the weight function 

W(X) over the interval (_\-“, xv) if 

The proof of the theorem can be found in Yeh [ 161 

To apply the theorem rewrite equation (21) as 

r, I < r < r,, i= I,2 (37) 

where r. E 0 and F, is a constant within the interval 

r, I < r -C vi, yet unknown. It is desired to determine 
the unknown F, from the above theorem such that the 

solution, R,l(r), obtained before, be orthogonal with 
respect to the weight function F,r. That is 

ir R,,(r)R,,(r)F,r dr = 0. if II $- ~1 
,=I r,_, 

# 0. if II = m. (38) 

To determine F, compare equation (37) with equation 
(31) and equations (23) and (24) with equations 
(34) and (35), respectively. to obtain the following 
relations : 

h=l, q=o, B,,=l. B,,=O. 

RI, = K. !I,, = 0, p = E;r, 

)I‘ = F,r/f(r) for I’, , < r < r,, i = 1.2. (39) 

Substituting equations (39) in the condi tion oforthog- 
onality (36) yields 

F’,/F, = K. (40) 

Equation (40) implies that the ratio of Fz to F, must 

Substitute II = SL+&_ , R,,(r)r,,(~) into cqtration 
(I 5) which yields after rearrangement 

or upon using equation (2 I ) 
, 

1 R,,(r)1‘,,(5)+ 1 i~K,,(r)I‘,.I7)~~.I/(I.) = 0. (43 1 
,? I +/- I 

Next g(r) is expanded in terms of the eigenfunctions 

.y(r) = C (;,,R;,(r-j 
I> , 

143) 

where the constants G,, are given b” 

n/ 
G,, = (’ r’R,,,(r) dr / 

i! 
R,.,(r)r dr- 

)/ (’ 

II = I. 1.. . ,A’. (45) 

Inserting equation (44) into equation (43) and 
rearranging gives 

i R,,(r)[r:,(7)+i~iI-.,,(T)--C;,,I = 0. 
#l , 

(41) 

Since, in general. K,,(r) 1s not zero. NC must ha\<: 

I-‘;, + E.,; r ,/ - G,, = 0, II’l.2.... (47) 

The solution of equation (47) is 

I‘,, _ C,, e + + <;z 
7.: ’ 

II = I.?.... 14x1 

The temperature distribution is then given by 

The coefficients cn can be obtained by using the initial 
condition (I 6) together with the orthogonality prop.- 
erties of the cigenfunctions 

-1 

(‘,, = -s, 
ij 

R,,(r)r dr+ 
,I 

F[ R,.,(r)r drj/ 

I 
R:,,(r)r dr+ 

k’ Pii 

! 1 
G’,, 

k_, 
Rl,,(r)r dr - Lz . 

i I/ 

II = I .2.. 150) 

The steady-state temperature distribution can easily 
be derived by setting the left-hand side of equation 
(I 5) to zero and solving for 0. giving 
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S,+(c/l6)[1-r“+(4/K) lnb] 0 < r < 1 

e(r’ r) = S2 + (C/4@ In (r/b) 1 <r<b. 

Also, when the fluid and solid have the same thermo- 
physical properties and viscous dissipation is neg- 
ligible, equation (49) reduces to 

with I.,, n = 1,2,. being the positive roots of 

J3(Ab) = 0. This is the solution for the temperature 
distribution in a solid cylinder of infinite length, sub- 

jected to a constant surface temperature, see e.g. 
p. 199 of Carslaw and Jaeger [19]. 

Case 2. Heatflux boundary condition 
First homogenize condition (20a) in the following 

way. Define 

@r, r) = ti(r, r) + S, &). (51) 

Substituteequation (51) into equations (17) and (20a) 
to obtain 

r=O: z +S,f$‘(r) = 0 (52) 

r=b: z +S,qY(r) = S,. 

In order to homogenize equations (52) and (53) we, 
obviously, must have 

4’(O) = 0 (54) 

and 

q+‘(b) = 1. (55) 

A function 4(r) which satisfies equations (54) and 
(55) is, e.g. 

4(r) = &. (56) 

Substituting equation (51) with equation (56) into 
equation (15) gives 

+g*(r), z > 0.0 < r < b 

(57) 

where 

cr2f2S,/b 0 <r < 1 
g*(r) = 2S,k,b 

l<r<b. (58) 

Following a similar procedure to that in case 1 yields 
the following solution : 

+.$, Rn(r) (cm e-“lT+ g) (59) 

with 

G,* = [ [ (cr2+T)R,.(r)rdr 

K h2S,k 

+z s 
__ R,,(r)r 

, b 
dr RTn(r)r dr 

+:lRi(r)rdr]. n=0,1,2 ,..., N (60) 

and 

[s 1 

II 

Rfn(r)rdr+glRi,,(r)rdr]-z. 

n= 1.2,... (61) 

Note that 1, = 0 is an eigenvalue of (28a), which gives 
R,,(r) = R,,(r) = 1, and yields the linear term in time 
which appears in equation (59). 

When the fluid and solid have identical thermo- 

physical properties and viscous dissipation is neg- 
ligible, the solution (59) reduces to 

2s, 
0(r, z) = -T 

b 

J&d 
I;b=J&,b) 1 

where L,,, n=1,2,... are the positive roots of 

J,(lb) = 0. This is the solution for the temperature 
distribution in a solid cylinder of infinite length being 

imposed to an external wall heat flux, see e.g. p. 203 
of Carslaw and Jaeger [ 191. 

RESULTS AND DISCUSSION 

A new approach was introduced for the solution of 

conjugated heat transfer problems. The solid and fluid 

domains are combined and regarded as one domain 
with discontinuities. A solution by an eigenfunction 
expansion was presented, the eigenfunctions of which 
are not orthogonal to each other with respect to the 
usual weighting function, according to the Sturm- 
Liouville theorem of orthogonality. These eigen- 
functions. however, become orthogonal to each other 
with respect to a special weighting function, derived 
from a theorem by Yeh [16]. The main results for the 
temperature distributions are given by equation (49) 
for a prescribed wall temperature, and by equation 
(59) for an imposed wall heat flux. 

The variation of the fluid-wall interfacial tem- 
perature with time for different values of the con- 
jugation parameter K* is presented in Tables I and 
7. the former for a prescribed wall temperature and -, 



Table I. Temperature variation with time at the solid-fluid 
interface (v = I ), for the parameters ,/k = 2, h = I .2, c = 1 

and S, = I 

r 0.0005 o.ous 

K* 
0.05 0.5 

0.00 1 0.055 0.054 0.052 0.037 0.010 
0.002 0.243 0.242 0.232 0.165 0.043 
0.003 0.416 0.414 0.397 0.283 0.075 
0.004 0.552 0.549 0.528 0.378 0.101 
0.005 0.656 0.653 0.628 0.453 0.122 
0.006 0.736 0.733 0.‘706 0.512 0.140 
0.007 0.798 0.795 0.766 0.561 0.156 
0.008 0.845 0.842 0.812 0.601 0.170 
0.009 0.881 0.878 0.X48 O.h34 0.183 
0.01 0.909 0.906 0.X76 0.662 0.195 
0.02 0.993 0.991 0.972 0.803 0.28 I 
0.03 0.999 0.998 0.985 0.856 0.340 
0.04 I.000 0.999 0.988 0.884 0.386 
0.05 1.000 0.999 0.990 0.902 0.425 
0.06 1.000 0.999 0.992 0.916 0.458 
0.07 1.000 0.999 0.993 0.926 0.486 
0.08 I.000 0.999 0.994 0.934 0.512 
0.09 1.000 0.999 0.994 0.940 0.536 
0.10 1.000 0.999 0.995 0.946 0.557 
0.20 1.000 I .ooo 0.99X 0.976 0.709 
0.30 I.000 I.000 0.999 0.99 1 0.808 
0.40 I.000 I.000 l.OOU 0.999 0.X80 
0.50 1.000 1.000 1.001 1.004 0.936 
0.60 1.000 I .ooo I.001 I.007 0.978 
0.70 1.000 1.000 1.001 1.009 I .010 
0.80 1.000 I.000 I.001 1.010 1.034 
0.90 I .ooo I .ooo I .oo I I.01 1 I 053 
I .oo I .ooo I .ooo I.OOI 1.01 I I.068 
2.00 I .ooo I .ooo 1.001 1.01 I I.111 
3 .oo 1.000 1 .ooo LOOI 1.01 I I.1 II 

the latter for an imposed heat flux. The relevant par- 
ameters for both tables are Jk = 2, h = 1.2, c = 1 and 
S2 = I (Table 1) or S, = I (Table 2). The results are 
obtained with 50 terms in the series expansion (using 

more terms did not affect the results to four significant 
digits). 

From Table I it may be realized that the tem- 
perature decreases with increasing values of Ihe con- 

jugation parameter and that it reaches an expected 
steady state. Table 2 shows that the temperature 
decreases with larger values of K* and also with time. 

As expected, the temperature does not reach a steady 
state due to a constant heat flux at the pipe outer wall. 

The greater the value of the conjugation parameter 

Table 2. Temperature variation with time at the solid iluiti 
interface (I = I), for the parameters . k = 2, h = 1.X T’ =- / 

and S, = 1 v 
_ 

K* 
0.05 9.5 5 

0.01 0.274 
0.02 0.341 
0.03 0.408 
0.04 0.474 
0.05 0.541 
0.06 0.608 
0.07 0.674 
0.08 0.741 
0.09 0.X08 
0. I 0 0.X74 
0.20 i ,540 
0.30 2.206 
0.40 2.872 
0.50 3.538 
0.60 4.203 
0.70 4.869 
0.X0 5.535 
0.90 6.200 
I .oo 6.866 
2.00 13.523 
3 .oo 20. II9 
4.00 26.X3.5 
5.00 33.492 
6.00 40. I48 
7.00 46.805 
8 .OO 53.461 
9.00 60.1 IX 

IO.00 66.774 

.~ 

0.269 
0.336 
0.403 
0.469 
0.536 
0.602 
0.669 
0.735 
0.801 
0.X67 
I.529 
2.188 
7.X46 
3.503 
4.160 
4.817 
5.474 
6.131 
6.7X7 

13.354 
19.921 
26.487 
33.054 
39.621 
46. I x7 
52.754 
59.321 
65.X87 

0.226 

0.294 
0.361 
0.427 
0.493 
0.557 
0.62 I 
0.685 
0.74x 
11.81 I 
I.427 
2.02’ 
2.619 
3.207 
3.792 
‘I.377 
4.96! 
5.544 
6.13X 

I I .96 I 
17.795 
23.62X 
29.46 I 
35.295 
41.11X 
46.Yhl 
52.795 
5X.628 

0.1 14 (J.100 
O.IXS 0.159 
0.249 0.307 
0..307 0.749 
0.362 0.287 
0.415 0.322 
0.465 0.356 
0.513 0.3xX 
0.560 0.418 
0.60.5 0.448 
I.017 0.7 12 
I.391 0.95i 
I.752 1.193 
2.108 1.42x 
2.463 I .h6J 
2.818 I w b 
3.172 3.135 
3.526 ?..37l 
3.X80 2.60; 
7.422 4.963 

! 0.964 7 ,3 I 9 
14.505 9.67h 
1 x.047 I3 032 
21.589 14.3X8 
2s. I30 I (x74> 
2X.672 1q.10: 
32.114 ?I 35” 
-35 755 :.i.x14 

K* = v (( pcF),,,,,,l(pcF),,,,,). the greater the efYeea 01‘ 
the fluid thermophysical properties on the sol&fluid 
interface temperature. Thus, at a given time, the 
dimensionless temperature of the solid-fluid inLcrface 
is closer to the initial system temperature (0 = 0) for 
greater values of the conjugation parameter. 

Table 3 shows a comparison between the results 01 

the present solution and those of Krishan [13], for 
a case where a constant heat flux is prescribed at the 

pipe wall. Krishan’s [13] solution is not only a short 
time solution but also a boundary layer type of solu- 

tion in that the thickness of the thermal layer in the 
fluid should always be less than R,. The presem eigcn- 
function solution is not restricted in this fashion. It 
can be realized that the results are considerably 

Table 3. Temperature variation with time at the solid-fluid interface (r ::- 1). 
for the parameters ,,/k = 2, b = I .2, c = I and S, = 1 : a comparison between 

the present solution and that of Krishan [13] 

K* 
T 0.0005 0.005 0.05 0.5 5 

_~~ ---. 

Present solution 
Krishan [13] 0.01 

0.274 0.269 0.226 0.114 0.100 
0.204 0.198 0.164 0.128 0.062 

Present solution 
Krishan [13] 0.09 

0.808 0.801 0.748 0.560 0.41X 
1.954 I.923 I .646 0.841 0.284 

Present solution 
0.25 

1.873 : ,858 1.728 I .206 0.835 
Krishan [ 131 5.204 4.723 4.286 I.624 0.485 
_~ ____~ _ ___ _ ~.~~ ~_. _ ~_ ~~.~ ~~~~.~ - 
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0.8. 

0.6. 

0. 

0.4- 

0.2. 

k=2 

l=O.l 

b=l .2 

--- 

___ 

. . . . . . . . 

od I * 8 . I . I . I I I , 

0.0 0.2 0.4 0.6 0.8 1.0 
r 

FIG. 1. Temperature variation with distance from the pipe 
centre for different magnitudes of viscous dissipation. 

different from those of Krishan’s approximate solu- 

tion [ 131, which is supposed to be valid for short time 
periods only. We do not find a consistent trend in the 
difference between our solution and that of Krishan. 
It should be noted that in the case of identical ther- 
mophysical properties of the solid and the fluid and 

negligible viscous dissipation our solutions both for a 
prescribed wall temperature and for a prescribed wall 
heat flux, yield the correct solution for heat con- 

duction in a solid cylinder (without the heat gen- 
eration). In addition, the solution for the case of a 
given wall temperature yields the correct steady-state 

Table 4. Temperature variation with time at the solid-fluid 
interface (r = I), for the parameters Jk = 2, b = 1.2, c = 10 

and S, = -1 

K* 
r 0.0005 0.005 0.05 0.5 5 

0.01 -0.274 -0.269 -0.222 -0.083 -0.021 
0.02 -0.341 -0.335 -0.284 -0.118 -0.005 
0.03 -0.408 -0.401 -0.345 -0.144 0.019 
0.04 - 0.474 - 0.467 -0.404 -0.164 0.046 
0.05 -0.541 -0.532 -0.462 -0.179 0.075 
0.06 -0.607 -0.598 -0.519 -0.192 0.105 
0.07 - 0.674 - 0.664 -0.576 -0.202 0.135 
0.08 -0.740 -0.729 -0.632 -0.210 0.165 
0.09 -0.807 -0.795 -0.687 -0.217 0.196 
0.10 -0.873 -0.860 -0.742 -0.223 0.226 
0.20 - 1.539 -1.511 - 1.268 -0.241 0.523 
0.30 - 2.203 -2.159 - 1.773 -0.229 0.815 
0.40 - 2.868 -2.805 -2.266 -0.207 1.107 
0.50 -3.532 -3.451 -2.754 -0,181 1.398 
0.60 -4.197 -4.096 -3.238 -0.154 1.687 
0.70 -4.861 -4.741 -3.721 -0.127 1.981 
0.80 -5.526 -5.385 -4.204 -0.099 2.272 
0.90 -6.190 - 6.030 -4.686 -0.071 2.563 
1 .oo -6.855 -6.674 -5.167 -0.043 2.854 
2.00 -13.499 -13.119 -9.982 0.234 5.766 
3.00 -20.143 - 19.563 - 14.797 0.512 8.678 
4.00 -26.787 -26.008 -19.612 0.790 11.590 
5.00 -33.431 -32.452 -24.427 1.068 14.502 
6.00 -40.075 -38.897 -29.242 1.346 17.413 
7.00 -46.719 -45.341 -34.057 1.623 20.325 
8.00 -53.363 -51.786 -38.871 1.901 23.237 
9.00 -60.007 -58.230 -43.686 2.179 26.149 

10.00 -66.651 -64.675 -48.501 2.457 29.061 

solution. These checks lead us to hope that our solu- 
tions are correct. 

The effect of viscous dissipation on the fluid tem- 
perature distribution is depicted in Fig. 1. Here the 
variation of the temperature with the radius is shown 
for different magnitudes of viscous dissipation. From 
this figure, it may be observed that temperatures 
increase both with the radius and with larger values 
of viscous dissipation. 

There may be situations of opposing heat transfer 
mechanisms. Heat generation tends to increase the 
fluid temperature while in the case of heat being 
extracted at the pipe wall, the latter tends to decrease 
the fluid temperature. Table 4 shows a case where heat 
at the pipe wall is being removed. From this table, 
one can realize that for the higher values of the con- 
jugation parameter heat transfer reversal at the solid- 
fluid occurs at some stage in the transient. This heat 
flow reversal occurs sooner for increasing values of 
the conjugation parameter. 
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TRANSFERT TIIERMIQUE CON.lU<JUE VARI/\HL.E POI!R UN ECOLJI_EMI.hl 
LAMINAIRE DANS IiN T-L!HF 

IGsumt- Ccttc &tudc analyst Ic transfert that-mique conjugul val-iahlc dan\ I‘i-coulcmcnt lammaire plant- 
men1 btabli hydrodvnamiquemcllt cl thcrmiquement dans un tube. Deur cas sont considkrts: tcmp&raturc 
pari&talc uniformc et densit dc flux thcrmvquc uniformc ;I la paroi. IJnc mbthodc dc sCpar:ltion de\ 
variahlcs traitc ic tluide et le solide comma unc seule rkglon a\ec ccrtaines discontinuit&s. 1.~5 functions 
proprcs qui nc sent pat orthogonalcs entre cllcs selon la function de pond&ration usuelle cn accord a\ec 
le tht:or&ne de Sturm Liouville. sent rcnducs orthogonalcs d I’aidc d’une fonction dc pondCration sp&iale. 
On conclut quc le degrt dc coniueaison et Ia dissipation Gsqueusc pcuvc~~t avoir un grand efrct sur la 

&&bution de tcmp&aturc dans Ic lluidc. 

I~STATlON~1lF.K lCON.iIJGI1:RTl:R W,&RMEiiHERGANG HEI LAMINAREK 
ROFIRSTRiiMI’NG 

%usammenfassung- ~-III der \orliqcndcn Arbcit uird dct- /eltlich \ctiinrlcrliche konjuglcrtc W:irmciiherg;mg 
bci hydrodqnamisch und thcrmisch \ollstiindigentwickeltcr laminarcr Rohrstr~mung;Inalytisch behandelt. 
Es werden die Fallc konstantcr Wandtempcratur und konstanter Wiirmcstromdichtc in dcr Rohrwand 
hetrachtet. Eine unkonventionclle Methode dcr Variablentrennung uird angcwandt. wclchc t:lllid und 
Fcststolt‘ als ein Gehict mlt hcstlmmten Diskontinuititcn hehandelt. Die resultiercndcn Eifenfilnktionen 
sind -bcrogen auf die iihlichcn C;cwichtungsfu~~ktioncn nach dcm Sturm,:Liouvill~-Theorem ~nicht 
orthogonal zueinandcr. Sic wcrdenjedoch mit Hilfe einer cpeziellen Gewichtungsfunktion in orthogonaien 
Zustand pebracht. Es zeigt sich. daR dcr Grad dcr Konjugation und der viskosen Dissipation einen starken 

FinlluB auf die Tcmperatur\ertc~lung ,111 Fluid haben k(inncn. 

HECTAL@iOHAPHbIA COTIPIIXEHHbIfi TEnJIOnEPEHOC rIPM J-IAMHHAPHOM 
TEgEHRM B TPY6E 

hHOTaIVIa-AHamiXipyeTCx HeCTaUHOHa,XtbIii COnpSKKeHHblii TenXOnCpeHOC npH JEiMHH~pHOM Te’leHRM 

B -rpyFie C nOJIHOCTbI0 pa3BHTbIM I’BAPOlS%HaMH’RCKUM II TCMnCpaT,‘pHbIM npO&UIXM&t. kkC.W,‘loTC~ 

ABB CJ,y’XaX: C nOCTORHHOti TeMnCpaTypOfi CTeHKU II nOCTOIlHHOr0 Ten,,OBOrO IIOTOKB. npHMeHRCTCS4 

HeCTaHnapTHblti MeTOn pa3iWnCHHR ne~MCHHb,X, B KOTOPOM XHL,KOCTb B TBepnOe Ten0 ,XiCCMaTpa- 

BBEOTCII KBK OAHa 06naCTb C HCKOTOPbIMU pa3pbtBHOCTFiMEl. nOn,‘YeHHbIe B ,X3yJlbTaTC CO6CTBeHHbte 

@yHKQIXri He XBJIRIOTCR B3BAMHO OPTOrOHWIbHblMll OTHOCUTeJIbHO 06bI’lHOii BCCOBOti @YHKUAB COrXtCHO 

TeOpeMe mTypMa-.byBHJU,X, HO B3a”MHO OPTOrOHtUbHbI OTHOCBTenbHO oco6oti B‘XOBOi? +yHKWli. 

,&L”aeTCX BbIBO& ST0 CTeneHb COnpXXeHHOCTH U BIIJKBIl LWXCHnaUHK MOrYT OKaSbIBaTb CyUCCTBeHHOe 

Bnmme Ha pdcrmenenewr r~uneparyp E x(~~lr.omfi. 


