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Abstract—This study analyses the transient conjugated heat transfer in laminar pipe flow, where the flow
is both hydrodynamically and thermally fully developed. Two cases are considered : a prescribed constant
wall temperature and a constant heat flux at the wall. A non-standard method of separation of variables
is applied, which treats the fluid and the solid as one region with certain discontinuities. The resulting
eigenfunctions, which are not orthogonal to each other with respect to the usual weight function according
to the Sturm-Liouville theorem, are made orthogonal to each other with respect to a special weight
function. It is concluded that the degree of conjugation and viscous dissipation may have a great impact
on the temperature distribution in the fluid.

INTRODUCTION

WE CONSIDER the transient conjugated heat transfer
in laminar pipe flow. The flow is hydrodynamically
and thermally fully developed and either the wall tem-
perature or the wall heat flux is prescribed.

The need to solve the coupled temperature dis-
tribution in the fluid and the solid arises in the design
of energy-related systems during the period of startup,
shutdown or any off-normal surge in normal oper-
ating conditions. Examples are the design of compact
heat exchangers, thick-walled pipes, change in power
level transients in gas turbine engines and the design
of cooling channels of nuclear reactors. In such cases,
the boundary conditions imposed at the external sur-
face, in general, are different from their counterparts
at the internal surface. These deviations emerge
because the wall plays a significant role in distributing
the heat transferred from the external surface to the
fluid or vice versa.

Early attempts to solve unsteady heat transfer
problems mainly employed approximate methods to
deduce the gross features of the problems [1-3].
Recently, several numerical solutions have been
obtained for unsteady thermal entrance heat transfer
in laminar channel flows with various thermal bound-
ary conditions [4-6]. All the noted studies [1-6]
focused on the transient heat transfer characteristics,
neglecting the heat conduction in the solid and its heat
capacity. The results of such investigations are valid
for flows in thin-walled ducts, but not for thick-walled
ones. Recently, Sucec and Sawant [7-10] and Cotta
et al. [11] analysed the effect of wall heat capacity on
unsteady heat transfer in laminar channel flows and

showed that it is of great importance. Nevertheless,
wall conduction still remained untreated. The latter
effect was examined by Chung and Kassemi [12],
Krishan [13], Lin and Kuo [14] and Yan e? al. [15].
The methods of solutions were either approximate
[12, 13] or numerical [14, 15]). We addiess the problem
studied by Krishan [13] who employed the method of
Laplace transforms, but the resulting solutions were
valid for short-time periods only. In the following
the problem is first formulated. An exact solution is
derived by an extended method of separation of vari-
ables developed by Yeh [16, 17], which is capable of
treating discontinuous eigenfunctions. Methods for
the solution of multispace domain diffusion problems
can be found in an excellent study by Wirth and
Rodin [18], who mentioned over 200 references.
Detailed results are presented and compared to those
of Krishan [13].

ANALYSIS

Consider a hydrodynamically and thermally fully-
developed flow with mean velocity u,, in an infinitely
long pipe. The internal radius of the pipe is R; and its
external radius is R,. The solution is carried out for
the first time domain ¢ < z,,,, = z/2u,,, where z is an
axial distance from the inlet cross-section. In this
domain the downstream locations in the pipe have
not yet been reached by any of the fluid that was at
the pipe inlet at the beginning of the transient. For
the boundary conditions considered, 07/0z = 0, so
that the energy equations for heat transfer in the fluid
and solid, respectively, are given by
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A, constant, equation (30)

A matrix, equation (28)

B, constant, equation (34)

B, constant, equation (35)

B, constant, equation (34)

B, constant, equation (35)

B, constant, equation (30)

b ratio of external and internal radii of the
pipe, R,/R;, or variable, equation (35)

¢ dimensionless magnitude of viscous
dissipation

¢,  constant, equation (50) or equation (61)

¢,  specific heat at constant pressure

D,, D, constants, equation (32)
E,, E, constants, equation (33)
e,, e, constants, equation (26)

F  constant, equation (41)

f function, see definition below equation
(15)

f1, f2 constants, equation (26)

G, constant, equation (45)

G¥ constant, equation (60)

g function, see definition below equation
(15)

g* function, equation (58)

ratio of conductivities, k,/k,

conjugation parameter, \/k/K

ratio of wall to fluid thermal diffusivities,

P|Cp1/€2/ﬂchzk|

thermal conductivity

number of terms in series expansion

function, equation (31)

heat flux or function, equation (31)

space eigenfunction, equation (26)

*

= x>

R

NOMENCLATURE

R; internal pipe radius
R, cxternal pipe radius
! dimensionless radial coordinate, 7/ R,
F radial coordinate

S, dimensionless heat flux

S, dimensionless wall temperature

T temperature
T
T,
T

initial system temperature
« wall temperature

T, reference temperature

! time

u,, mean velocity of fluid

I velocity distribution

w  weight function, equation (31)
independent variable

X vector, equation (37)
dependent variable, equation (31).

Greek symbols

I'  time function related to the separation of
variables, equation (48)

f dimensionless temperature distribution

/. scparation constant

Jli dynamic viscosity
density

T dimensionless time, £,2/p ¢, R’

¢  function, equation (56)

W  dimensionless temperature distribution,
equation (51).

Superscripts
—  fluid region
+  solid region.

0<t <ty O0<rF<R )]
T, i 1¢{._0T,

2Ch T = [ gl Y Sat-Gualll 1N

P2l ot S F OF OF

0<!<tp R <T<R, 2

and the associated initial and boundary conditions
are

t=0,0<F<R,: T,=T>=T, 3)
t>0,7=0: T, = finite (or 0T ,/0F = 0) )]
t>0,f=R: T,=T, &)
t>0,F=R;: k0T, [oF = k,0T,/0F (6)
t>0,F=R,: —k,0T,joF=q or T,=T,

(7a,b)

where subscripts 1 and 2 refer to the fluid and the
solid, respectively. All variables retain their usual
meaning and are given in the Nomenclature.

Define the following dimensionless variables

o k= _’,‘:,zf’,'f;ﬂ !

(s F kit
_= . R — . Z
pl("le klpZL,/rl

where for an external wall heat flux boundary
condition

16pu,,
B qR;

k,
Nta S it = ¢
i i,

while for a wall temperature boundary condition

-1,
TW_TR’

Tw“ 7—i

lbuu%
T T,—TR’

0= CCRT-To

Sy

with v = 2u,,(1—r?/R?) to obtain the following math-
ematical formulation of the problem:
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%:;—gr(r%>+cr2, >0,0<r<l1 (8
%:k;%(ﬁgf), t>0,1l<r<b (9
1=0,0<r<g<b: 0, =0,=0 (10)
t>0,r=0: 6, =finite (or 86,/0r =0) (11)
t>0,r=1: 0, =0, (12)
t>0,r=1: 06,/or = Kdf,/or (13)
t>0,r=>5b: 00,/0r=8, or 0,=3S,.
(14a,b)

Equations (8)—(14) can be put in the following unified
form:

00 10/( 00
azf(r);5<r5)+g(r), t>0,0<r<b

15)
with

1 ca? 0<rgl

f(’)z{k’ gm:{o 1<r<b
1=0,0<r<b: 0=0 (16)
7>0,r=0: f=finite or 90/or=0 (17)
t>0,r=1: 6~ =67 (18)
t>0,r=1: 60~ /0r = KoO* |0Or (19)

t>0,r=5b: 06/or=8, or 8=S,
(20a,b)

where 6~ and 6 are the temperature distributions in
the liquid and solid, respectively.

Thus, the fluid and solid domains are converted
into a single region with a discontinuous heat source
and thermophysical properties.

The eigenvalue problem associated with equation
(15) can be put in the form

f(r)l%(r%—f): —A*R D
r=0: R = finite (or dR/dr = 0) (22)
r=1: R =R* 23)
r=1: OR /or= KOR™or 24)
r=b: OR/Or=0 or R=0 (25a,b)

where R is an eigenfunction and —A? is a separa-
tion constant. The solution of equation (21) can be
expressed by

R, = e Jy(Ar)+e, Y (ir) 0
N {Rz = 1T/ JR) + 12 Yol Jl) 1
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To satisfy condition (22), e, must be zero and the
remaining three boundary conditions (23)-(25) yield

Ax =0 27
where x = (e, f1, f>)T and
—Jolks)  Jo(ha/JE)  Yo(Ra/ SR
A=|—K*(h) SR Yi(d)Jk)
0 Ji(bIK) Y\ (Lb\Jk)
(28a)
for boundary condition (25a) or
—Joldn)  Jolha/JK)  Yo(Aa/\JK)
A=|=K*i(4) Ji(AJE Yk
0 JoabINJK)  Yo(2abl k)
(28b)

for boundary condition (25b), where K* = ,/k/K.
Equations (27) are homogeneous simultaneous equa-
tions for e,, f;, and f,. Non-trivial solutions exist if
the determinant of the coefficients is zero, i.e.

det A = 0. (29)

Equation (29) can be solved for the eigenvalue 1. For
each value of 4, 4,, which satisfies equation (29), only
two of the three equations in (27) are linearly inde-
pendent, and two of the unknowns, say f, and f,, can
be solved from these two equations in terms of the
other, say e,. Thus, the eigenfunction R,, aside from
the constant multiplier ¢, is

Ry, = Jo(4a1)
R2n = AnJ()(lnr/\/k) +Bn YO(;"nr/\/k)
(30)

R,(r) = {

with

_ o) Y (/R = K* Yo (A [\/K)T 1 (An)
VACHNLID SICMNIIES CIVSNIIVACWNLS

_ KR (A) = To () (A K)
RFZICHNIOY SICNNISES AN YACHN oY

The functions {R,(r)} do not form an orthogonal set,
because the first derivative of R,(r) is discontinuous
at r = 1 as indicated by equation (19), and therefore
the Sturm-Liouville theorem of orthogonality does
not apply. The functions, however, can be made
orthogonal to each other with respect to a proper
choice of weight function which can be found by the
theorem of Yeh [16].

n

Theorem. Given the differential equation

d dy )
ax [P(X) a] +lgx)+ 4wy =0 (31)

where p(x), ¢(x) and w(x) may be discontinuous at
X =X,,X,,..., X%, intheclosed interval x, < x < x,.
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I /,. As. 21 ... arc the values of this equation
satisfying the boundary conditions

Diy(xy)— Dy (xy) =0 {32)

and

E\y(xy)— Exp'(xy) =0 (33)

where a prime denotes the derivative and Dy, D, E|,
E, are arbitrary constants, and these solutions possess
the following discontinuities at x = x . x,..... X
RV

je e

yx )= Byy(x )+ By [blx)y], - e

P=1.2,.. . N1 (34)
bGP — o = Bulb(Oy) - o + Bay(x).
i=12.... NI (35)

in which B, and B, are the constants and b(x) and
b'(x) may be discontinuous at x = x, X5,..., Xy .
and if y,, v5, y3,... are the solutions corresponding
to these values of /, then the functions {y,(x)} form a
system orthogonal with respect to the weight function
w(x) over the interval (x,., xy) if

_plxDb(x)

BB = ity

B, B, —
(36)
The proof of the theorem can be found in Yeh [16].

To apply the theorem rewrite equation (21) as

d dR F,
F; + 47 = (),
dx < ' ) s
o< r<r, i=12 (37)

where r, = 0 and F, is a constant within the interval
r,, <r<r,yet unknown. It is desired to determine
the unknown F, from the above theorem such that the
solution, R,(r), obtained before, be orthogonal with
respect to the weight function Fyr. That is

”

Y J R, R, () Frdr=0,iln#m

i=1

£ 0, ifn=m. (3%)

To determine F, compare equation (37) with equation
(31) and equations (23) and (24) with equations
(34) and (35), respectively, to obtain the following
relations :

b=1, ¢g=0, B, =1L B, =0,
By =K. By =0, p=Fr
w=Frif(ry for r, <r<r, i=12039)

Substituting equations (39) in the condition of orthog-

onality (36) yields
Fy/F, = K. (40)

Equation (40) implies that the ratio of F, to F; must

S. Ok el al.

be equal to K. The proportional constant is immateriat
as it does not affect the orthogonal relation (38). /.

will be taken as the dimensionless quantity
Fi=1 F,=K (4h

Case 1. Wall temperature boundary condition
Substitute 0 = S,+ 2., R,(rnT, (1) into equation
(15) which yields after rearrangement

- 2 R.NT, (1)

gl

1 df dR,(r)
4, WAGK ,.(’ P

) Pty +gr)y =0 (42)
or upon using equation (21)

Y RANT(D+ Y A
a1

e
Next g(r) is expanded in terms of the cigenfunctions

R, (NI, (ty—g(ry = 0. {43)

g =Y GR,(5 (44)

»oo t

where the constants G, are given by

| o
G”:vJ ﬂkmuamﬁ[J R, (r)r dr
0 DL Jo

Inserting equation (44) into equation (43) and
rearranging gives

Y RN+, (0)—-G,] = 0. (46)

"
Since, in gcncral. R, (r) 1s not zero. we must have

Fo+al,—G, =0, n=12... 47)

The solution of equation (47) is
Gn

" A,f{' ot
g =€ T

Zon=12,... (48)
22

r
The temperature distribution is then given by

-G,
«~+;aj.(4w
I

1o

0(r0) = S, + 3 R,(1) (c e
e

The coefficients ¢, can be obtained by using the initial
condition (16) together with the orthogonality prop-
erties of the cigenfunctions

1 K h N ;
¢, =-S5, R, (nrde+ | R (n)r dr)s’
0 k Ji A

Kr ~h G
(j‘ R, (ryrdr+ - ‘ R3, (r)r dr>~ SN
i l\ 1 ¥, A

N\t n

n= 12, ..

(50)

The steady-state temperature distribution can easily
be derived by setting the left-hand side of equation
(15) to zero and solving for 0, giving



Unsteady conjugated heat transfer in laminar pipe flow

0<rgl
1<r<b.

r

S5+ (c/16)[1 —r* + (4/K) In B]
07} = {S2+(c/4K) In (r/b)

Also, when the fluid and solid have the same thermo-
physical properties and viscous dissipation is neg-
ligible, equation (49) reduces to

0(r,7) = S, [1—2 i e

n=1

,131 JO (’ln r )__
AbJ 1 (4,0)

with A,, n=1,2,... being the positive roots of
Jo(Ab) = 0. This is the solution for the temperature
distribution in a solid cylinder of infinite length, sub-
jected to a constant surface temperature, see e.g.
p. 199 of Carslaw and Jaeger [19].

Case 2. Heat flux boundary condition
First homogenize condition (20a) in the following

way. Define
0(r, 1) =y (r, 1)+ S:9(). (1)

Substitute equation (51) into equations (17) and (20a)
to obtain

r=0: %+S‘¢’(r)= (52)
r=b: LS =s (53)

In order to homogenize equations (52) and (53) we,
obviously, must have

¢'(0) = (54
and

(b)) =1 (55)
A function ¢(r) which satisfies equations (54) and
(55)is,e.g.

$0) =2 (56)

Substituting equation (51) with equation (56) into
equation (15) gives

(M f()—( aﬂ)«!—g*(r), >0,0<r<b

or
(57)
where
er’+28,/b 0<rgi
g1 = {2S1k/b 1<r<b O®

Following a similar procedure to that in case 1 yields
the following solution :

S, (rt 1
* e — -
G+ A (2 4)

N . G*
+ X RM{eGe ™+ 5] (59)
n=1 n

o(r,1) =

1447

with

[j (cr +——> R, (r)rdr
~II§J. 2AS[;kRZ,,(r)r dr:l/liﬁl RZ.(r)rdr

K b
+EJ R%,,(r)rdr:l, n=012..,N (60)
1

1 K [*
c, = —%[-[) R, (r*dr+ EJ: R,,(n)r? dr]/
¥ K b G*
[L R}, (r)rdr+ EJ: Rgn(r)rer—T;,

(61

Note that 4, = 0 is an eigenvalue of (28a), which gives
R o(r) = R,0(r) = 1, and yields the linear term in time
which appears in equation (59).

When the fluid and solid have identical thermo-
physical properties and viscous dissipation is neg-
ligible, the solution (59) reduces to

n=12,...

o(r,7) = ’lTl

S 0 a2 L T
T [E 4 ’2,,; © b, (b)

where 4,, n=1,2,... are the positive roots of
J1(Ab) = 0. This is the solution for the temperature
distribution in a solid cylinder of infinite length being
imposed to an external wall heat flux, see e.g. p. 203
of Carslaw and Jaeger [19].

RESULTS AND DISCUSSION

A new approach was introduced for the solution of
conjugated heat transfer problems. The solid and fluid
domains are combined and regarded as one domain
with discontinuities. A solution by an eigenfunction
expansion was presented, the eigenfunctions of which
are not orthogonal to each other with respect to the
usual weighting function, according to the Sturm-—
Liouville theorem of orthogonality. These eigen-
functions, however, become orthogonal to each other
with respect to a special weighting function, derived
from a theorem by Yeh [16]. The main results for the
temperature distributions are given by equation (49)
for a prescribed wall temperature, and by equation
(59) for an imposed wall heat flux.

The variation of the fluid-wall interfacial tem-
perature with time for different values of the con-
Jjugation parameter K* is presented in Tables 1 and
2; the former for a prescribed wall temperature and
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Table 1. Temperature variation with time at the solid~fluid
interface (» = 1), for the parameters \/k =2,b=12,¢c=1

and S, =1
K*

T 0.0005 0.005 0.05 0.5 5
0.001 0.055 0.054 0.052 0.037 0.010
0.002 0.243 0.242 0.232 0.165 0.043
0.003 0.416 0.414 0.397 0.283 0.075
0.004  0.552 0.549 0.528 0.378 0.101
0.005 0.656 0.653 0.628 0.453 0.122
0.006 0.736 0.733 0.706 0.512 0.140
0.007 0.798 0.795 0.766 0.561 0.156
0.008 0.845 0.842 0.812 0.601 0.170
0.009 0.881 0.878 0.848 0.634 0.183
0.01 0.909 0.906 0.876 0.662  0.1935
0.02 0.993 0.991 0.972 0.803 0.281
0.03 0.999 0.998 0.985 0.856 0.340
0.04 1.000 0.999 0.988 0.884 0.386
0.05 1.000 0.999 0.990 0.902 0.425
0.06 1.000 0.999 0.992 0916 0.458
0.07 1.000 0.999 0.993 0926  0.486
0.08 1.000 0.999 0.994 0.934 0.512
0.09 1.000 0.999 0.994 0.940 0.536
0.10 1.000 0.999 0.995 0.946 0.557
0.20 1.000 1.000 0.998 0.976 0.709
0.30 1.000 1.000 0.999 0.991 0.808
0.40 1.000 1.000 1.000 0.999 0.880
0.50 1.000 1.000 1.001 1.004 0936
0.60 1.000 1.000 1.001 1.007 0.978
0.70 1.000 1.000 1.001 1.009 1.010
0.80 1.000 1.000 1.001 1.010 1.034
0.90 1.000 1.000 1.001 1.011 1.053
1.00 1.000 1.000 1.001 1.011 1.068
2.00 1.000 1.000 1.001 1.011 L1

1.000 1.011

1.001

1.114

the latter for an imposed heat flux. The relevant par-
ameters for both tables are \Jk = 2,b = 1.2, ¢ = 1 and
S, =1 (Table 1) or S, = 1 (Table 2). The results are
obtained with 50 terms in the series expansion (using
more terms did not affect the results to four significant
digits).

From Table 1 it may be realized that the tem-
perature decreases with increasing values of the con-
jugation parameter and that it reaches an expected
steady state. Table 2 shows that the temperature
decreases with larger values of K* and also with time.
As expected, the temperature does not reach a steady
state due to a constant heat flux at the pipe outer wall.

The greater the value of the conjugation parameter

S. OLEK et al.

Table 2. Temperature variation with time at the solid- fluid
interface (r = 1), for the parameters \/k = 2, h = 1.2, ¢ = |

and S, =1
K’*

T 0.0005 0.005 0.05 0.5 5
0.01 0.274 0.269 0.226 0.114 0.100
0.02 0.341 0.336 0.294 0.185 0.159
0.03 0.408 0.403 0.361 0.249 0.207
0.04 0.474 0.469 0.427 0.307 0.249
0.05 0.541 0.536 0.492 0.362 0.287
0.06 0.608 0.602 0.557 0.415 0.322
0.07 0.674 0.669 0.621 0.465 0.356
0.08 0.741 0.735 0.685 0.513 0.388
0.09 0.808 0.801 0.748 0.560 0.418
0.10 0.874 0.867 0.811 0.605 0.448
0.20 1.540 1.529 1.427 1.017 0.712
0.30 2.206 2,188 2.027 1.391 0.955
0.40 2872 2.846 2.619 1.752 1.192
0.50 3.538 3.503 3.207 2.108 1.428
0.60 4.203 4.160 3792 2463 1.664
0.70 4.869 4.817 4.377 2.818 1.900
0.80 5.535 5.474 4.961 3172 2,135
0.90 6.200 6.131 5.544 3.526 2.371
1.00 6.866 6.787 6.128 3.880 2.607
2.00 13.523 13.354 11.961 7.422 4.963
3.00  20.179 19.921 17.795 10.964 7.319
4.00  26.835 26.487 23.628 14.505 9.6076
500  33.492 33.054 29.461 18.047 12.032
6.00  40.148 39.621 35.295 21.589 14388
7.00  46.805 46.187 41.128 25130 16.745
8.00  53.461 52.754 46.961 28.672 19101
9.00  60.118 59.321 52.795 32214 21457

23814

10.00

66.774 65887  5¥.628 35.755

K* = ((pck Yayia/(pck ) oa)- Lhe greater the effect of
the fluid thermophysical properties on the solid—fluid
interface temperature. Thus, at a given time, the
dimensionless temperature of the solid—fluid interface
is closer to the initial system temperature (0 = 0) for
greater values of the conjugation parameter.

Table 3 shows a comparison between the results of
the present solution and those of Krishan [13]. for
a case where a constant heat flux 1s prescribed at the
pipe wall. Krishan’s {13] solution is not only a short
time solution but also a boundary layer type of solu-
tion in that the thickness of the thermal layer in the
fluid should always be less than R;. The present eigen-
function solution is not restricted in this fashion. It
can be realized that the results are considerably

Table 3. Temperature variation with time at the solid-fluid interface (r = 1),
for the parameters \/k =2,h=1.2,c=1and S, = |: a comparison between

the present solution and that of Krishan [13]

T 0.0005
Present solution 0.01 0.274
Krishan [13} ' 0.204
Present solution 0.09 0.808
Krishan [13] ' 1.954
Present solution 0.25 1.873
Krishan [13] ' 5.204

K*

0.005 0.05 0.5 S
0.269 0.226 0.114  0.100
0.198 0.164 0.128  0.062
0.801 0.748 0.560 0.418
1.923 1.646 0.841 0.284
1.858 1.728 1.206  0.835
4.723
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Fic. 1. Temperature variation with distance from the pipe
centre for different magnitudes of viscous dissipation.

different from those of Krishan’s approximate solu-
tion [13], which is supposed to be valid for short time
periods only. We do not find a consistent trend in the
difference between our solution and that of Krishan.
It should be noted that in the case of identical ther-
mophysical properties of the solid and the fluid and
negligible viscous dissipation our solutions both for a
prescribed wall temperature and for a prescribed wall
heat flux, yield the correct solution for heat con-
duction in a solid cylinder (without the heat gen-
eration). In addition, the solution for the case of a
given wall temperature yields the correct steady-state

Table 4. Temperature variation with time at the solid-fluid
interface (r = 1), for the parameters \/k = 2,5 = 1.2, ¢ = 10

and §, = —1
K*

T 0.0005 0.005 0.05 0.5 5
0.01 —-0.274 —-0.269 —-0.222 -—-0.083 -0.021
002 —-0341 -0335 —0.284 —0.118 -0.005
0.03 —0.408 —0.401 —0.345 -0.144 0.019
0.04 —0474 —0467 —-0.404 -—0.164 0.046
0.05 —0.541 —0.532 -0.462 -0.179 0.075
006 —0.607 —0.598 —0.519 -0.192 0.105
0.07 —0.674 —0.664 —0.576 —0.202 0.135
008 —0.740 —-0.729 -0.632 —-0.210 0.165
0.09 —-0807 ~0.795 -—-0.687 -0.217 0.196
0.10 —0.873 —0.860 —0.742 0223 0.226
020 —1.539 —1.511 —1.268 —0.241 0.523
030 —2203 -2.159 -—1.773 —0.229 0.815
040 —2868 —2.805 —2.266 —0.207 1.107
0.50 —3.532 —3451 -2754 —0.181 1.398
0.60 —4.197 —4.096 —3.238 —0.154 1.687
0.70 —4.861 —4.741 -3.721 -0.127 1.981
080 —5.526 —5385 —4.204 —0.099 2272
090 —6.190 —6.030 —4.686 —0.071 2.563
.00 —6.855 —6.674 —5167 —0.043 2.854
200 ~13.499 —13.119 —-9982 0.234 5.766
3.00 —20.143 —19.563 —14.797 0.512 8.678
4.00 —~26.787 —26.008 —19.612 0.790 11.590
500 —33.431 —-32.452 24427 1.068 14.502
6.00 —40.075 —38.897 —29.242 1.346 17413
7.00 —46.719 —45.341 —34.057 1.623  20.325
8.00 —53.363 —51.786 —38.871 1.901 23.237
9.00 —60.007 —58.230 —43.686 2,179  26.149

10.00 —66.651 —64.675 —48.501 2457  29.061
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solution. These checks lead us to hope that our solu-
tions are correct.

The effect of viscous dissipation on the fluid tem-
perature distribution is depicted in Fig. 1. Here the
variation of the temperature with the radius is shown
for different magnitudes of viscous dissipation. From
this figure, it may be observed that temperatures
increase both with the radius and with larger values
of viscous dissipation.

There may be situations of opposing heat transfer
mechanisms. Heat generation tends to increase the
fluid temperature while in the case of heat being
extracted at the pipe wall, the latter tends to decrease
the fluid temperature. Table 4 shows a case where heat
at the pipe wall is being removed. From this table,
one can realize that for the higher values of the con-
jugation parameter heat transfer reversal at the solid—
fluid occurs at some stage in the transient. This heat
flow reversal occurs sooner for increasing values of
the conjugation parameter.
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TRANSFERT THERMIQUE CONJUGUE VARJABLE POUR UN ECOULEMENT
LAMINAIRE DANS UN TUBE

Résumé—Cette tude analyse le transfert thermigue conjugué variable dans 'écoulement laminaire pleine-
ment ¢tabli hydrodynamiquement et thermiguement dans un tube. Deux cas sont considérés : température
pari¢tale uniforme et densite de flux thermique uniforme a la paroi. Une méthode de séparation des
variables traite le fluide et le solide comme une seule région avee certaines discontinuités. Les fonctions
propres qui ne sont pas orthogonales entre elles selon ta fonction de pondération usuelle en uccord avec
le theoréme de Sturm-Liouville, sont rendues orthogonales a I'aide d’une fonction de pondération spéciale.
On conclut que le degré de conjugaison et la dissipation visqueuse peuvent avoir un grand effet sur la
distribution de température dans le fluide.

INSTATIONARER KONJUGIERTER WARMEUBERGANG BEJ LAMINARER
ROHRSTROMUNG

Zusammenfassung—in der vorlicgenden Arbeit wird der zeitlich verdnderliche konjugierte Wirmeiibergang
bei hydrodynamisch und thermisch vollstindig entwickelter laminarer Rohrstromung analytisch behandelt.
Es werden die Fille konstanter Wandtemperatur und konstanter Wirmestromdichte in der Rohrwand
betrachtet. Eine unkonventionclle Methode der Variablentrennung wird angewandt. weiche Fluid und
Feststoff als ein Gebict mit bestimmten Diskontinuititen behandelt. Die resultierenden Eigenfunktionen
sind-—bezogen auf dic dblichen Gewichtungsfunktionen nach dem Sturm/Liouville-Theorem  -nicht
orthogonal zueinander. Sie werden jedoch mit Hille einer speziellen Gewichtungsfunktion in orthogonalen
Zustand gebracht. Es zeigt sich. duB der Grad der Konjugation und der viskosen Dissipation einen starken
EinfluB auf die Temperaturverteilung im Fluid haben kénnen.

HECTALIMOHAPHBIN COITPSDXKEHHBINW TEIMJIONEPEHOC ITPU JIAMUHAPHOM
TEYEHHWH B TPVBE

AnHOTAaAR— A HAJIA3UPYETCH HECTAIMOHAPHBIH CONPSKEHHBIH TEIUIONEPEHOC IPH TAMYHAPHOM TEUEHHH
B TpY6e C MOJHOCTBIO Pa3sBUTHLIM IMAPONAMHAMHAYECKAM U TeMNepaTypHbiM npodunamu. Mccnenyrorcs
IBa CNIydas. C MOCTOSHHOM TeMIEpaTypol CTCHKM U TMOCTOSHHOTO TemjoBoro moroka. ITpumensiercs
HECTAHIAPTHBIH METOJA PA3ieNiCHUs MEPEMEHHBIX, B KOTOPOM JKHAKOCTL H TBEPIOE TEIO PACCMATDH-
BAIOTCH KaK OHAa 00JAcTh € HEKOTOPHIME Pa3phiBHOCTSAMH. I10oJIydeHHBIE B pedysibTaTe COOCTBEHHbIE
GYHKIHH He ABAAIOTCS B3AUMHO OPTOTOHAJIbHBIMH OTHOCHTESIbHO OGBIYHOM BecoBOl QyHKUHH cOrnacHo
Teopeme lITypma-JIMYyBHILIS, HO B3AUMHO OPTOrOHAJBHBEI OTHOCHTENILHO 0COGOH BECOBOH (yHKIMH.
JNlenaercs BHIBOJ, YTO CTENEHL CONPIKEHHOCTH U BA3Kas JUCCHNALMS MOTYT OKa3biBaTh CYUIECTBEHHOE
BJIMSHHUE HA PACTIPENIESIEHHE TEMIIEPATYD B MUIKOCTH.



